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Abstract 
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intangible capital, having lower degrees of financial constraints, or facing greater product 

market competition. We further document that, as labor mobility restrictions relax, treated 

firms increase their green innovation and green investment. Our results suggest that greater 

labor mobility improves corporate environmental performance through boosting emission 

abatement activities, highlighting an environmental benefit of labor mobility.    
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1. Introduction 

Firms’ pollutant emissions, as a byproduct of their production and operations,  constitute a 

major driver of many environmental issues, such as global warming, extreme weather, and the 

rise of sea levels (e.g., Stern, 2008; Currie et al., 2014). Existing research has confirmed the 

costly negative externalities of air pollutant emissions on labor markets, including human 

health and labor productivity, as well as the economy (e.g., Graff Zivin and Neidell, 2013; Dell 

et al., 2014). Meanwhile, labor as a direct input to corporate production profoundly impacts 

energy efficiency, productivity, and technology (e.g., Wozniak, 1987; Black and Lynch, 1996), 

which, in turn, influences corporate emissions (Chen et al., 2021). However, to the best of our 

knowledge, few studies have been conducted to examine the effects of labor market frictions 

on corporate environmental decisions and outcomes. In this paper, we fill this research gap by 

studying how labor mobility, one of the most important aspects of labor markets, affects firm 

emissions.  

Companies often restrict labor mobility to preempt competition from rival firms (e.g., 

Kaplan and Strömberg, 2003; Conti, 2014). 1  There has been an ongoing debate on the 

economic impact of labor mobility restrictions in academia and the business world (Saxenian, 

1996; Gilson, 1999; Marx et al., 2009; Barnett and Sichelman, 2016), which has prompted 

governments and authorities to regulate such restrictions. For example, on July 9, 2021, 

 
1 A notable example is that of Amazon, who required its employees, including even temporary warehouse workers, 

to sign 18-month non-compete agreements, preventing these employees from working for its competitors. Facing 

public criticism, in March 2015, Amazon decided to remove such agreements from its employment contracts (see 

https://www.theguardian.com/technology/2015/mar/27/amazon-remove-noncompete-clause-contracts-hourly-

workers). 

https://www.theguardian.com/technology/2015/mar/27/amazon-remove-noncompete-clause-contracts-hourly-workers
https://www.theguardian.com/technology/2015/mar/27/amazon-remove-noncompete-clause-contracts-hourly-workers
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President Joe Biden signed an executive order that encourages the Federal Trade Commission 

(FTC) to ease labor mobility restrictions.2  

A priori, how labor mobility impacts corporate environmental performance is 

ambiguous. On the one hand, free labor movement enhances knowledge spillovers across 

companies, which generates investment opportunities and improves technologies (Almeida and 

Kogut, 1999; Rosenkopf and Almeida, 2003; Agrawal et al., 2006; Parrotta and Pozzoli, 2012). 

The prospects of knowledge spillovers incentivize firms to hire employees with valuable know-

how and promote them to invest in human capital and innovation (Gilson, 1999; Marx et al., 

2009; Garmaise, 2011; Samila and Sorenson, 2011). Importantly, several studies document that 

knowledge spillovers improve green technologies and investments (Bosetti et al., 2008; 

Dechezleprêtre et al., 2017; Dechezleprêtre et al., 2020), which help to reduce corporate 

emissions (Alam et al., 2019; Chen and Lee, 2020; Gao and Li, 2021). Therefore, mobile labor 

markets could increase firms’ ability and incentive to mitigate emissions through knowledge 

spillovers.  

On the other hand, greater labor mobility reduces employers’ incentive to invest in 

human capital and research and development (R&D) (e.g., Conti, 2014; Barnett and Sichelman, 

2016) because they are concerned about increased risk of key employees with valuable 

knowledge and skills being poached by competitors (Rubin and Shedd, 1981; Grossman and 

Hart, 1986; Jeffers, 2019). Such  firms may find it difficult to reduce emissions, because 

pollution abatement relies significantly on investments in human capital and technologies (Xu 

and Kim, 2022). This line of reasoning, thus, suggests that firms facing a more mobile labor 

force may experience higher emissions.                    

 
2  For more details, see https://www.cnbc.com/2021/07/22/biden-administration-aims-to-rein-in-abusive-non-

compete-agreements.html. 

https://www.cnbc.com/2021/07/22/biden-administration-aims-to-rein-in-abusive-non-compete-agreements.html
https://www.cnbc.com/2021/07/22/biden-administration-aims-to-rein-in-abusive-non-compete-agreements.html
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To test the above competing hypotheses and establish the causal impact of labor 

mobility on corporate emissions, we exploit the state-level changes in the enforcement strength 

of CNCs as exogenous shocks to the degree of labor mobility. CNCs, also known as non-

compete agreements (NCAs), are specific employment contracts signed between corporate 

employers and employees to prevent departing employees from joining or establishing 

competing firms within a certain period and geographic area. CNCs are prevalent across 

various occupations, especially in high-skill and high-paying positions, such as engineering 

and computer and mathematical jobs (Starr et al., 2021). Bai et al. (2022) show that the number 

of lawsuits against employees on CNC breaches has increased in recent years, and such 

litigation risk can force new employers to stay away from hiring workers subject to CNCs. 

Meanwhile, to avoid potential lawsuits, highly-skilled professionals (e.g., engineers) who have 

signed CNCs often involuntarily switch to different industries (Marx, 2011), leading to a brain 

drain in industries with labor mobility restricted by these agreements (Marx et al., 2010).  

In the U.S., CNCs are governed by the relevant jurisdictions of the states where 

employees work, and so the enforceability of CNCs varies across states and overtime. For 

example, North Dakota forbids CNC enforcement, and California does not even recognize 

CNCs. In contrast, Florida has the strongest CNC enforceability, which was strengthened 

through a state legislature in 1996. Recent research documents that state-level CNC 

enforcement significantly affects labor mobility, especially in knowledge-intensive 

occupations (e.g., Garmaise, 2011; Jeffers, 2019; Starr et al., 2021). To the extent that changes 

in CNC enforceability are driven by either state court rulings or legislations, which are arguably 

exogenous to company decisions and outcomes (Ewens and Marx, 2018; Jeffers, 2019),3 they 

provide an ideal setting in which to examine the effect of labor mobility on corporate emissions.       

 
3 Section 4.2.1 discusses in detail the endogeneity issues regarding the state-level CNC enforcement changes.   
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We adopt a difference-in-differences (DID) approach to test whether and to what extent 

weakened CNC enforcement affects corporate emissions of air pollutants. Using plant-level 

data obtained from the Environmental Protection Agency’s (EPA) Air Markets Program Data 

(AMPD), we find that carbon dioxide (CO2), sulfur dioxide (SO2), and nitrogen oxides (NOx) 

emissions drop significantly by 18.1%, 12.6%, and 3.4%, respectively, following the 

weakening of CNC enforceability. This effect is economically large and consistent with the 

knowledge spillover hypothesis that greater labor mobility improves corporate environmental 

performance through increased green innovation and investment.  

Our main finding persists in several robustness tests. First, we investigate the dynamic 

effects of weakened CNC enforcement on plant emissions and find that the documented decline 

in emissions only appears after the weakening of CNC enforceability. This analysis provides 

evidence in support of the key assumption underlying our DID analysis, namely, parallel pre-

shock trends, and alleviates endogeneity concerns about potential reverse causality between 

firm emissions and weakened CNC enforcement. Second, we find that our baseline results 

remain unchanged when using a propensity score matched sample, suggesting that our 

inference is unlikely to be driven by differences in the characteristics between the treated and 

control groups. Additionally, our baseline results are robust to using a control sample consisting 

of plants in neighboring states, using firm headquarters locations to define the treated and 

control groups (instead of the plant locations), using a stacked DID regression approach, and a 

placebo test. 

To gain further insights into the effect of labor mobility on firm emissions, we explore 

the cross-sectional variations in key industry and firm characteristics using difference-in-

difference-in-differences (DDD) regression models. Because CNCs are more common and 

relevant for skilled professionals (e.g., Garmaise, 2011) and for firms with greater intangible 

capital (Kini et al., 2021), we expect the impact of weakened CNC enforcement on corporate 
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emissions to be more pronounced for firms with greater reliance on skilled labor or intangible 

capital. Our DDD results are consistent with this conjecture. Furthermore, to the extent that 

firms require ample financial resources to invest in abatement activities that mitigate emissions 

(Xu and Kim, 2022), we expect firms with lower degrees of financial constraints to be in a 

better position to take advantage of the benefits from a more mobile labor force (e.g., 

knowledge spillover effects) to reduce emissions. Our empirical finding is in line with this 

argument. Finally, we expect firms facing greater product market competition to mitigate their 

emissions more significantly in response to weakened CNCs enforcement, because such firms 

arguably are able to exploit greater levels of knowledge spillovers from their competitors 

(Henderson and Cockburn, 1996). Again, our empirical result is in line with this prediction.  

In the final test, we seek to better understand the economic mechanisms driving our 

findings, that is, how increased labor mobility facilitates technological solutions and abatement 

activities and that drive down corporate emissions. To this end, we study the effect of weakened 

CNC enforceability on green innovation and green investment. Using both firm- and plant-

level data, we find that firms improve the quantity and quality of green innovation and increase 

green investment when CNCs become less enforceable. These results suggest that greater labor 

mobility enhances green innovation and reinforces green investment, thereby mitigating air 

pollutant emissions through technology spillovers.        

Our study contributes to two strands of literature. First, we add to an emerging literature 

exploring the various effects of labor mobility on company decisions and outcomes. Recent 

research in this area has studied the impact of labor mobility on firm value (He and Wintoki, 

2020; Shen, 2021), investment (Jeffers, 2019; Bai et al., 2022), innovation (Samila and 

Sorenson, 2011; Xiao, 2022), entrepreneurship (Samila and Sorenson, 2011; Starr et al., 2018), 

corporate financial decisions (Aobdia, 2018; Chen et al., 2018; He, 2018), and corporate 

governance (Garmaise, 2011; Cici et al., 2021; Kini et al., 2021). Compared to the extant 
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studies, we provide new evidence of the social and environmental consequences of labor 

mobility restrictions for the corporate sector. Our results suggest that attempts to restrict labor 

mobility result in a negative impact on corporate environmental profiles, which, in turn, impose 

negative externalities on society and the public.  

In particular, our findings speak to the ongoing debate over labor mobility restrictions 

and their economic impact. Proponents of such restrictions argue that limiting employee 

mobility helps to protect company intellectual property and investments, promoting overall 

innovation (e.g., Barnett and Sichelman, 2016). Opponents, however, believe that labor-

mobility constraints reduce employees’ bargaining power and wages (Johnson et al., 2021) and 

diminish innovation via  restricted knowledge spillovers (Gilson, 1999; Marx et al., 2009), 

thereby having negative consequences on regional growth (Saxenian, 1996). 

Second, we add to the growing literature on the determinants of corporate 

environmental performance, particularly corporate emissions of air pollutants. Recent studies 

have investigated how firms’ emissions are driven by environmental policies (e.g., Shapiro and 

Walker, 2018), corporate finance (Andersen, 2017; Levine et al., 2018; Goetz, 2019; Akey and 

Appel, 2021; Gao and Li, 2021; Iovino et al., 2021; Bartram et al., 2022; Lyu et al., 2022; Xu 

and Kim, 2022), shareholders (Akey and Appel, 2019; Chu and Zhao, 2019; Kim et al., 2019; 

Shive and Forster, 2020; Azar et al., 2021; Choi et al., 2021; Dasgupta et al., 2021; Heath et 

al., 2021; Naaraayanan et al., 2021), non-shareholder stakeholders (Bellon, 2021, 2022; Chen, 

2022; Choy et al., 2022; Dai et al., 2022), corporate governance (Wang and Yu, 2019; Li et al., 

2021b; Altunbas et al., 2022), external governance (Duflo et al., 2013; Grinstein and Larkin, 

2021), political factors (Chu et al., 2021; Heitz et al., 2021; Bisetti et al., 2022), and human 

capital investment (Chen et al., 2021). To the best of our knowledge, the current paper is the 

first to demonstrate how a major labor market friction, namely, labor mobility restrictions, 
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reduces corporate environmental performance, thus showing how relaxing such restrictions 

could lower corporate emissions.  

This study provides relevant policy implications. Our empirical evidence suggests that 

greater labor mobility improves corporate pollution abatement and ultimately contributes to 

environmental protection. To mitigate air pollution and climate change, as well as their 

negative consequences on the public and society, regulators should consider the benefits of 

policy reforms aimed at relaxing labor mobility restrictions, which facilitate the propagation of 

green innovation and green investment throughout the corporate sector. Our paper thus 

highlights the potential environmental and social benefits of mobile labor markets.    

The rest of this paper proceeds as follows. Section 2 develops the testable hypotheses. 

Section 3 describes our data and empirical methods. Section 4 presents the empirical findings. 

Section 5 concludes.   

 

2. Hypothesis Development 

Theory predicts an ambiguous relation between the degree of labor mobility and the extent of 

corporate emissions. On the one hand, greater labor mobility facilitates knowledge spillovers 

among firms since skilled workers moving across firms port their knowledge, skills, and know-

how with them, which will benefit their new employers (Almeida and Kogut, 1999; Rosenkopf 

and Almeida, 2003; Agrawal et al., 2006; Parrotta and Pozzoli, 2012). Through such 

knowledge spillovers, firms may learn about new investment opportunities and technologies, 

which, in turn, facilitate their investments in human capital and innovation (Gilson, 1999; Marx 

et al., 2009; Garmaise, 2011; Samila and Sorenson, 2011). Meanwhile, knowledge spillovers 

are important in shaping the diffusion of technologies and spreading scientific developments 

that help to foster corporate innovation, which boost firms’ green technologies and increase 

green investment (Bosetti et al., 2008; Dechezleprêtre et al., 2017; Dechezleprêtre et al., 2020). 
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Previous literature demonstrates that corporate environmental performance benefits 

substantially from clean technology advances through decreased energy consumption, 

improved energy efficiency, and enhanced pollution abatement (Alam et al., 2019; Chen and 

Lee, 2020; Gao and Li, 2021).4 Overall, in mobile labor markets, firms may have greater 

incentive and ability to engage in pollution abatement due to knowledge spillovers. Based on 

these arguments, we predict that weaker labor mobility restrictions will have a positive impact 

on corporate emissions of air pollutants. Our hypothesis can be stated as follows.  

 

Hypothesis 1a: Greater labor mobility leads to lower corporate emissions.  

 

On the other hand, when labor markets are mobile, companies could be reluctant to 

invest in human capital by cutting back on staff training or by reducing investments in R&D, 

since they are concerned that valuable workers might start their own competing businesses or 

work for rivals (Barnett and Sichelman, 2016; Jeffers, 2019). Such a concern is highlighted by 

several previous studies, which show that incumbent firms may forgo certain investment in 

their workforce due to a “hold-up” problem  (Rubin and Shedd, 1981; Grossman and Hart, 

1986; Acemoglu and Shimer, 1999), while eschew innovating or adopting risky R&D strategy 

due to the concern that departing employees could transfer proprietary information to rival 

firms (Conti, 2014; Barnett and Sichelman, 2016).5  In addition, because worker mobility 

facilitates the entry of new firms, incumbent firms may experience higher competitive pressure, 

 
4 Dechezleprêtre et al. (2017) find that the magnitude of knowledge spillovers from green technologies is large, 

even comparable in scope to those observed in the IT industry.  

5 A hold-up problem arises when firms must invest before hiring their employees and wages are negotiated ex-

post. As a result of this problem, firms cannot make optimal investments in the presence of workers’ bargaining 

power ex-post (Acemoglu and Shimer, 1999).     
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leading to lower investments (Jeffers, 2019). With lower investments in R&D and human 

capital, firms may experience a deterioration in their environmental performance, given that 

pollution abatement is costly and requires substantial inputs of energy, labor, raw materials, 

and technologies in production processes (Chen et al., 2021; Xu and Kim, 2022). To the extent 

that greater labor mobility could discourage firms from investing in the human capital and 

R&D required for emission abatement, we expect labor mobility to be negatively associated 

with corporate emissions. We thus formulate the following hypothesis.  

 

Hypothesis 1b: Greater labor mobility leads to higher corporate emissions. 

 

3. Data and Empirical Methods 

3.1. Data on Corporate Emissions 

3.1.1. Plant-level Emissions and Firm-level Financial Information 

As in recent research (e.g., Shive and Forster, 2020; Grinstein and Larkin, 2021), the source of 

emissions data used in this study is the AMPD.6 Since 1990, following the requirements under 

40 Code of Federal Regulations (CFR) Part 75, EPA’s Clean Air Markets Division (CAMD) 

has monitored and gathered emissions data in the power sector to ensure compliance with 

various emissions control programs administered by the EPA, including the Acid Rain Program, 

the Cross-State Air Pollution Rule, and Mercury and Air Toxics Standard, among others. The 

purpose of 40 CFR Part 75 is to establish requirements for continuous monitoring, 

recordkeeping, and reporting of CO2, SO2, and NOx emissions, along with facility, operation, 

and quality assurance test data from electricity generating units (EGUs). EGUs regulated by 

 
6  Since August 2022, the AMPD has been replaced by a new database, Clean Air Markets Program Data 

(CAMPD), which can be accessed at https://campd.epa.gov.  

https://campd.epa.gov/
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the emissions control programs must submit the data to the EPA,7 within 30 days at the end of 

each calendar quarter.  

Among the reported data from EGUs, those covering air pollutant emissions, which we 

use in our empirical analysis, are considered to be of outstanding quality (Shive and Forster, 

2020). The reason is that the EPA has gone to great lengths to ensure data accuracy. For 

example, the EPA operates quality assurance tests at emission sources, conducts periodic field 

audits to verify that emission monitors and data handling systems are functioning properly, and 

performs additional checks, such as detecting anomalous data. The EPA then makes certain 

data, including CO2, SO2, and NOx emissions, operations, and facility information, publicly 

accessible through the AMPD, a web-based dataset. These data are provided at the emission 

source level (i.e., plant level) and are available for the years 1980, 1985, 1990, and annually 

starting from 1995.    

We retrieve firm-level financial data from the Compustat database. Since the AMPD 

dataset does not disclose any parent company information for emission sources and there is no 

linking table or common identifier between the AMPD and Compustat, it is challenging to link 

the two databases. To address this issue, we use the information obtained from the EPA’s 

Greenhouse Gas Reporting Program (GHGRP). The GHGRP collects U.S. parent company 

information at the highest level for plants and facilities that emit 25,000 metric tons or more of 

greenhouse gases (GHG) per year and provides a power-plant crosswalk that links the AMPD 

and GHGRP through a plant identifier called the Office of Regulatory Information Systems 

Plant Location (ORISPL), starting from 2010.8 We, therefore, restrict our AMPD sample to the 

period between 2010 and 2019 and merge the AMPD and GHGRP databases using the ORISPL 

 
7 In general, EGUs with a nameplate capacity of greater than 25 megawatts are affected by the programs. 

8 We find that the GHGRP power plant crosswalk covers 96% of plant-year observations in the AMPD from 2010 

to 2019. 
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identifier to obtain parental company information. We then conduct a name-matching 

procedure to link the AMPD and Compustat databases through parent company names (see 

Online Appendix OA1 for more details on the name-matching process).  

 

3.1.2. Green Innovation and Investment  

For our green innovation analysis reported in Section 4.4., we rely on the United States Patent 

and Trademark Office (USPTO) database. We first use the linking table provided by Kogan et 

al. (2017) to match the USPTO and Compustat databases. Since the majority (64%) of our 

sample firms are in the utilities sector (Standard Industrial Classification codes (SIC) 4900–

4999), which is not covered in Kogan et al. (2017), we adopt the name-matching method as 

detailed in Online Appendix OA1 to link the unmatched sample firms with the USPTO data. 

We then determine whether a patent is “green” or not based on the Cooperative Patent 

Classification (CPC).9 Our first green innovation measure follows Li et al. (2021a), where we 

classify a patent as “green” if it has at least one CPC code of Y02 or Y04S.10 We construct the 

second measure as in Cohen et al. (2022). Specifically, we use a patent search strategy that the 

Organization for Economic Co-operation and Development (OECD) developed for the 

identification of environment-related technologies, which include environmental management, 

water-related adaptation technologies, biodiversity protection and ecosystem health, and 

various climate change mitigation technologies.11 

 
9 https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html.  

10 Code Y02 refers to patents that mitigate anthropogenic emissions of GHG and technologies that facilitate the 

adaptation to the adverse effects of climate change. Code Y04S represents systems integrating technologies on 

power network operation, communication, or information technologies for improving the electrical power 

generation, transmission, distribution, management, or usage (i.e., smart grids). 

11 Refer to Haščič and Migotto (2015) for a detailed explanation.  

https://www.uspto.gov/web/patents/classification/cpc/html/cpc.html
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 In terms of green investment data, we retrieve plant-level information from the United 

States Energy Information Administration (EIA) following Grinstein and Larkin (2021).12 The 

EIA conducts surveys to collect information on electricity generation processes from electric 

power plants, including data on electric power sales and revenue, electric generator capacity, 

and power plant operating data. To construct measures of (plant-level) green investment, we 

use the form EIA-923 to obtain data on the use of flue-gas desulfurization (FGD) equipment, 

quantities of fuels, and electricity generation. Specifically, for coal power plants, FGD 

technologies may remove around 90% of pollutants in the flue gases (Popp, 2003). In addition, 

we use the data on three main types of fossil fuels, namely, coal, petroleum, and natural gas. 

Coal is the most polluting fuel for power generation, followed by petroleum and natural gas 

(Grinstein and Larkin, 2021). To measure plant-level electricity production, we use net 

electricity generation measured in Megawatt hours. Linking the EIA and AMPD databases is 

straightforward through the ORISPL identifier.  

 

3.2. Empirical Methods 

To test the competing hypotheses (H1a and H1b) regarding the impact of labor mobility on air 

pollutant emissions, we adopt a DID identification strategy that exploits the exogenous changes 

in state-level CNC enforcement. Table 1 lists the CNC enforcement changes used in this study 

based on Ewens and Marx (2018).13 

[Insert Table 1 about here] 

 
12 https://www.eia.gov/electricity/data/detail-data.php.  

13  As in Ewens and Marx (2018), New York and New Mexico are excluded from our sample. The CNC 

enforceability changes in New York and New Mexico were specific to the broadcasting industry and physicians, 

respectively, which are irrelevant to our sample firms.  

https://www.eia.gov/electricity/data/detail-data.php


14 

 

We estimate a DID model with the CNC enforcement changes as our treatment of 

interest. The baseline regression model is as follows: 

𝐿𝑛(1 + 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑗,𝑡) =   +  𝑊𝑒𝑎𝑘𝑒𝑟 𝐶𝑁𝐶 𝐸𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡𝑠,𝑡 +  𝑿𝒊,𝒕−𝟏  

+ 𝒁𝒔,𝒕−𝟏 + 𝑗 + 
𝑐,𝑡

+ 𝑗,𝑡,                                      (1) 

where 𝑗 , 𝑖 , 𝑐 , 𝑠 , and 𝑡  denote plants, firms, industries, states, and years, respectively; 

𝐿𝑛(1 + 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑗,𝑡) is the natural logarithm of one plus the emissions (CO2_R, SO2_R, and 

NOx_R) by plant 𝑗 in year 𝑡; 𝑊𝑒𝑎𝑘𝑒𝑟 𝐶𝑁𝐶 𝐸𝑛𝑓𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡𝑠,𝑡 is an indicator that equals one if 

a plant is in a state that weakened CNC enforceability by the end of year 𝑡, minus one if a plant 

is in a state that strengthened CNC enforceability by the end of year 𝑡, and zero otherwise; 

𝑿𝒊,𝒕−𝟏 and 𝒁𝒔,𝒕−𝟏 denote a vector of the one-year lagged firm- and state-level control variables, 

respectively; 𝑗 and 
𝑐,𝑡

 are plant fixed effects and industry-by-year fixed effects defined at the 

six-digit North American Industry Classification System (NAICS) level, respectively; and 𝑗,𝑡 

is the error term.14 Standard errors are clustered at the state level, which is the level of treatment, 

to correct for serial correlation within the same state (Bertrand et al., 2004). 

We follow Shive and Forster (2020) to use CO2_R, SO2_R, and NOx_R as our emissions 

variables. Specifically, we use actual emissions volumes (CO2, SO2, and NOx) scaled by firm 

revenues obtained from the Compustat database.15 In terms of firm-level characteristics, we 

control for Log Total Assets, Leverage, Fixed Assets, Market-to-Book, ROA, and Firm Age 

following the existing climate finance literature (e.g., Shive and Forster, 2020; Bartram et al., 

 
14 Table OA1 in our online appendix reports the regression results for models with industry-by-year fixed effects 

rather than year fixed effects. The coefficients on the treatment indicators are qualitatively the same as our baseline 

results.  

15 In Table OA2 in our online appendix, we also use the natural log of one plus the actual emissions volumes as 

the dependent variables. The results remain qualitatively unchanged. 
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2022; Xu and Kim, 2022). In addition, we include State Unemployment Rate, Log (State GDP 

per Capita), State GDP Growth, and Democratic Votes to control for state-level economic and 

political characteristics. Appendix A provides detailed variable definitions.  

Our final sample includes 5,240 plant-years and 575 firm-years from 2010 to 2019. 

Table 2 presents summary statistics for the main variables used in our study. All the continuous 

variables, except for state-level controls, are winsorized at the top and bottom 1% of their 

sample distributions. Compared with the whole Compustat universe, our sample firms have 

larger total assets (Total Assets), higher leverage (Leverage), more tangible assets (Fixed 

Assets), and lower growth prospects (Market-to-Book). The reason for these differences is that 

these firms primarily operate in the utilities sector. 

[Insert Table 2 about here] 

 

4. Empirical Results 

4.1. Baseline Results 

Table 3 reports the baseline results from regressing air pollutant emissions on weakened state-

level CNC enforcement. Columns (1) and (2), (3) and (4), and (5) and (6) present the regression 

results for the three types of air pollutants, namely, CO2, SO2, and NOx emissions, respectively. 

The regression specification for columns (1), (3), and (5) includes only plant and industry-by-

year fixed effects and no control variables to alleviate the problem of “bad controls” (Angrist 

and Pischke, 2008). In columns (2), (4), and (6), we further add all the firm- and state-level 

control variables defined above. The coefficients on the variable of interest, Weaker CNC 

Enforcement, are consistent across different specifications, showing a significant and negative 
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impact of lower CNC enforceability on plant emissions.16 These results suggest that in the 

presence of weaker CNC enforcement, corporate emissions of CO2, SO2, and NOx decrease by 

18.1%, 12.6%, and 3.4%, respectively. These economic magnitudes are practically important. 

Overall, our baseline results suggest that greater labor mobility leads to lower corporate 

emissions and better environmental performance overall, which is in line with Hypothesis 1a 

and inconsistent with Hypothesis 1b.     

[Insert Table 3 about here] 

 

4.2. Robustness Tests 

4.2.1. Endogeneity Concerns on the Changes in CNC Enforcement  

The identification strategy used in the above analysis relies on a key assumption that the state-

level changes in CNC enforcement provide exogenous shocks to labor mobility in the DID 

model, and thus are orthogonal to corporate emissions. In what follows, we discuss the validity 

of this assumption and provide empirical evidence to address potential endogeneity concerns. 

As discussed, the CNC enforcement changes are driven by either state Supreme Court 

rulings or legislative decisions. Hence, there is less concern about lobbying or political pressure  

affecting court rulings, which are judicial decisions based on the merits of specific cases 

(Ewens and Marx, 2018; Jeffers, 2019). Two states, namely, Georgia and New Hampshire, 

 
16 Heath et al. (2022) point out a multiple testing problem that reusing natural experiments to examine different 

outcome variables may increase the probability of false discoveries. To the best of our knowledge, around 10 

papers have used the state-level changes in CNC enforcement in a staggered DID setting (e.g., Chen et al., 2018; 

He, 2018; Huang et al., 2019; Jeffers, 2019; He and Wintoki, 2020; Cici et al., 2021; Çolak and Korkeamäki, 

2021; Kini et al., 2021; Heath et al., 2022; Xiao, 2022). According to Heath et al. (2022), the adjusted critical 

value of the t-statistics given 10 prior findings using the same experiment is around 2.8. Most of our baseline 

results exceed the threshold suggested, thus mitigating the concern about possible false discoveries.   
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experienced changes to CNC enforcement due to legislations rather than court rulings, which 

raises the question of whether the CNC enforcement in these two states is plausibly exogenous. 

However, there were considerable uncertainties before the increase in CNC enforceability in 

Georgia, since the statutory change was due to a 2010 referendum that was criticized as 

misleading as it did not directly refer to CNCs (Ewens and Marx, 2018; Jeffers, 2019). 

Meanwhile, the New Hampshire law, which weakened CNC enforcement, was proposed by a 

state representative who had personally been influenced by a CNC, implying that this change 

was not directly due to corporate environmental policies (Ewens and Marx, 2018). In summary, 

the legislations passed in Georgia and New Hampshire were arguably exogenous. Nonetheless, 

in untabulated analysis, we find that our baseline results are robust to excluding these two states 

from the sample.  

To further alleviate the concern that state-level macroeconomic, political, and legal 

conditions may drive the changes in CNC enforcement, we follow previous literature (e.g., 

Acharya et al., 2014) and estimate a Cox proportional hazard model that predicts these changes. 

In the model, a “failure event” is defined as a change in CNC enforcement in a state; we remove 

a state from the sample for the years after it experiences some changes to CNC enforceability. 

We report the estimation results in Table 4. Column (1) includes plant CO2, SO2, and NOx 

emissions aggregated at the state level (State CO2 Emissions, State SO2 Emissions, and State 

NOx Emissions, respectively). Column (2) further controls for two measures of the rigidity of 

labor markets, namely, an index capturing the number of wrongful discharge laws that a state 

has recognized (Wrongful Discharge Laws) and the percentage of workers that are covered by 

a collective bargaining agreement in a state (State Union Membership). We also include state 

unemployment rate (State Unemployment Rate), GDP per Capita (Log (State GDP per Capita)), 

GDP growth (State GDP Growth), and general election votes for the Democratic Party 

(Democratic Votes) in Column (3). Across these models, none of the independent variables is 
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statistically significant, suggesting that neither these state-level factors nor aggregated plant 

emissions are likely to influence the changes in state CNC enforcement. The latter results also 

help to allay concerns regarding potential reverse causality.   

[Insert Table 4 about here] 

 

4.2.2. Parallel Trends Assumption 

Next, we examine the relation between weakened CNC enforcement and the timing of carbon 

emissions changes to validate another important assumption of the DID approach, namely, 

parallel trends (Bertrand and Mullainathan, 2003).17 In Table 5, we replace the Weaker CNC 

Enforcement variable in columns (1) and (2) of Table 3 (i.e., our preferred specifications) with 

five indicators, namely, Weaker CNC Enforcement-2, Weaker CNC Enforcement-1, Weaker 

CNC Enforcement0, Weaker CNC Enforcement+1, and Weaker CNC Enforcement2+. 

Specifically, Weaker CNC Enforcement-2 and Weaker CNC Enforcement-1 are dummy 

variables that equal one (minus one) if a state would weaken (strengthen) its CNC 

enforceability in two years and one year, respectively, and zero otherwise; Weaker CNC 

Enforcement0 is an indicator equal to one (minus one) if the state weakens (strengthens) its 

CNC enforceability in the current year and zero otherwise; Weaker CNC Enforcement+1 and 

Weaker CNC Enforcement2+ are indicators that equal one (minus one) if the state weakened 

(strengthened) its CNC enforceability one year before and two or more years before, 

respectively, and zero otherwise.  

The regression results reported in Table 5 show that the coefficients on Weaker CNC 

Enforcement-2 and Weaker CNC Enforcement-1 are statistically insignificant across alternative 

 
17 In the remainder of the analysis, we follow previous research (e.g., Shive and Forster, 2020) and use CO2 

emissions as the main dependent variable. 
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specifications with and without the control variables, supporting the parallel trends assumption 

and further implying that our results are unlikely to be driven by reverse causality. Consistent 

with our baseline results, the coefficients on Weaker CNC Enforcement0, Weaker CNC 

Enforcement+1, and Weaker CNC Enforcement2+ are significantly negative. In addition, the 

negative and significant coefficients on Weaker CNC Enforcement2+ suggest that the impact of 

the lower CNC enforceability on carbon emissions persists in the long run.         

[Insert Table 5 about here] 

 

4.2.3. Covariate Balance between the Treated and Control Groups 

To alleviate another concern that differences in the characteristics of the control and treated 

groups might drive our findings, we estimate the effect of weakened CNC enforcement on 

carbon emissions by using a propensity score matched sample. To create this sample, we retain 

all the observations for the control and treated groups one year before the CNC enforcement 

changes. We treat each year’s state-level changes as a separate event. Then for each event, we 

use a probit model to estimate the probability of being a treated firm by regressing a treatment 

indicator (equal to one if the firm belongs to the treated group, and zero otherwise) on all the 

firm-level covariates, namely, Log Total Assets, Leverage, Fixed Assets, Market-to-Book, ROA, 

and Firm Age, used in our baseline models. Next, within each three-digit NAICS industry 

cluster and for each event, we match each treated firm to a control firm based on the closest 

propensity score with a caliper of 0.1 and without replacement. Our final matched sample 

consists of 90 treated and control firms. Panel A of Table 6 reports the test for covariate balance 

of the matched sample. The test results show no significant difference in the mean values of 

any covariates between the treated and control groups, implying that our propensity score 

matching (PSM) procedure is successful.  
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Using the propensity score matched sample, we report the regression results in Panel B 

of Table 6. We find that these results are in line with our baseline findings, as they continue to 

show a significant and negative effect of weaker CNC enforcement on carbon emissions, with 

similar economic magnitudes. In summary, the PSM analysis suggests that our baseline results 

are robust to accounting for covariate balance.   

[Insert Table 6 about here] 

 

4.2.4. Additional Robustness Analysis  

We further establish the robustness of our main inference through several additional tests. First, 

to alleviate another endogeneity concern that local economic, legal, or political factors may 

drive our main inference, we construct a sample consisting of plants located in the treated states 

and their neighboring control states that may face similar regional conditions due to their 

geographical proximity. Columns (1) and (2) of Table 7 show that the regression results for 

this sample are consistent with our baseline findings. 

Since knowledge workers who are likely to be affected by CNCs could work at, or near, 

a firm’s headquarter (Bai et al., 2022), in the next robustness check, we use firm headquarters 

locations to redefine the variable of interest, Weaker CNC Enforcement. In columns (3) and (4) 

of Table 7, we then re-estimate the DID model and find the results to remain unchanged.  

Cengiz et al. (2019) and Baker et al. (2022) demonstrate the potential biases due to 

treatment effect heterogeneity in staggered DID regressions with two-way fixed effects 

(TWFE). To address this concern, we follow the suggestions provided by these studies and 

employ a stacked regression approach. The results, reported in columns (5) and (6) of Table 7, 

indicate that our baseline findings are robust to using this alternative research design.  

In a recent study, Flammer and Kacperczyk (2019) find that firms strategically improve 

their corporate social responsibility (CSR) performance in response to the threat of knowledge 
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leakage caused by greater labor mobility. Their finding raises the concern that our evidence of 

lower corporate emissions might be driven by firms’ increased engagement in CSR activities. 

To address this concern, we further add to our main model specification (column (2) of Table 

3) four main measures of CSR performance used in Flammer and Kacperczyk (2019), namely, 

the CSR rating score (KLD Index), the net CSR rating score (Net KLD Index), the 

environmental performance score (KLD Environment Index), and the net environmental 

performance score (Net KLD Environment Index).18 Table OA3 in our online appendix shows 

that our main finding continues to hold.  

Recent evidence suggests that when CNCs become less enforceable, firms may raise 

their investments and, therefore, experience higher sales growth and profits (Bai et al., 2022).19 

To alleviate the possibility that the observed decline in emissions might be due to increased 

sales (i.e., higher values of the denominators in our dependent variables), we control for firm 

investment in Table OA4 in our online appendix. Our results remain qualitatively the same.  

Despite several tests validating the DID approach presented above, there remains yet 

another concern that our baseline findings could be driven by unobserved factors that coincided 

with the changes in CNC enforcement. To rule out this possibility, following Heider and 

Ljungqvist (2015), we conduct a placebo test in which we randomly assign (pseudo) treated 

states and enforcement change years and then investigate the effect of the constructed (pseudo) 

shocks on carbon emissions. We repeat the procedure 5,000 times and report the distribution 

of estimated t-statistics of the coefficient estimates in Figure OA1 in our online appendix. The 

red vertical line in Figure OA1 represents the t-statistic estimated from our baseline regression. 

 
18 We find that the correlations between plant emissions and the four CSR performance measures range from 

−0.12 to 0.03.  

19  Nevertheless, some studies suggest that firms reduce their investments in response to weakened CNC 

enforcement (e.g., Conti, 2014; Barnett and Sichelman, 2016). 
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We find that this t-statistic differs significantly from the t-statistics estimated from the placebo 

samples, indicating that unobserved confounding factors are unlikely to drive our baseline 

findings.      

[Insert Table 7 about here] 

 

4.3. Cross-sectional Analysis 

In this section, we investigate potential cross-sectional variations in the effect of weakened 

CNC enforceability on corporate emissions to provide some evidence on the underlying 

mechanisms. We employ a DDD model by interacting the Weaker CNC Enforcement indicator 

with the moderating variable of interest, which represents industry- or firm-level cross-

sectional heterogeneity. In addition, we further add state-by-year fixed effects to our model 

specification to account for unobserved and time-varying confounding factors at the state level.   

 

4.3.1. Impact of Labor Skills and Intangible Capital  

The baseline findings in this study are consistent with the hypothesis that greater labor mobility 

(i.e., weaker CNC enforcement) leads to lower corporate emissions through knowledge 

spillover effects in the corporate sector. Since CNCs primarily restrict the mobility of highly-

skilled workers (Garmaise, 2011; Marx, 2011; Jeffers, 2019), we predict that the impact of 

lower CNC enforceability on corporate emissions will be more pronounced for plants with a 

greater share of skilled workers. We follow Ghaly et al. (2017) and construct the measure of 

skilled labor at the state-by-industry level by using the Occupational Employment Statistics 

(OES) data from the Bureau of Labor Statistics and the information on the classification of 

occupations from the U.S. Department of Labor’s Occupational Information Network 

(O*NET). Next, we estimate the DDD model by interacting the Weaker CNC Enforcement 

indicator with High Labor Skills, a dummy variable equal to one (zero) if a plant has an above-
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median (below-median) value of the measure. Column (1) of Table 8 reports the regression 

results. In line with our prediction, the coefficient on the interaction term of interest is 

significantly negative, indicating that, following the weakening of CNC enforceability, plants 

with greater reliance on skilled workers, which are more exposed to CNCs, experience even 

lower emissions.   

CNCs are more relevant when firms have more intangible assets, including intellectual, 

human, and organizational capital (Kini et al., 2021). Therefore, we expect the impact of 

weakened CNC enforcement on corporate emissions to be more pronounced for firms with 

greater intangible capital. To gauge firms’ intangible capital, we employ three firm-level 

measures. The first measure is knowledge capital (Peters and Taylor (2017), which is an 

estimate of the stock of knowledge capital, obtained by applying the perpetual-inventory 

method to a firm’s past spending on R&D. The second and third measures are R&D and SG&A 

expenses, respectively, following previous research (e.g., Eisfeldt and Papanikolaou, 2013; Qiu 

and Wang, 2018). R&D expenses are an important component of a firm’s intangible capital. 

Meanwhile, a large portion of SG&A expenses includes expenses associated with labor training 

costs, IT investment, advertising and marketing expenses, and R&D spending, which help to 

improve company proprietary knowledge. We set three conditioning variables, High 

Knowledge Capital, High R&D Expense, and High SG&A Expense, to one (zero) if a firm has 

an above-median (below-median) value of knowledge capital, R&D expenditures, and SG&A 

expenses, all scaled by the book value of total assets, respectively. The regression results 

reported in columns (2) to (4) of Table 8 show that the coefficients on the three interaction 

terms of interest are all significantly negative. Consistent with our expectation, these results 

suggest that, when CNCs are less enforceable, firms with higher intangible capital face a  more 

mobile labor force and can  reduce emissions significantly more than those with lower 

intangible capital. 
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[Insert Table 8 about here] 

 

4.3.2. Impact of Financial Constraints and Product Market Competition 

Recent research documents that firms’ financial resources play an important role in affecting 

their emission abatement behaviors (e.g., Bartram et al., 2022; Xu and Kim, 2022). With higher 

knowledge spillovers induced by less enforceable CNCs, financially unconstrained firms 

should be in a better position to take advantage of this benefit and allocate their ample financial 

resources to environmental abatement activities. We thus expect financially unconstrained 

firms to reduce more emissions than their financially constrained counterparts. Following Xu 

and Kim (2022), we use a text-based measure of financial constraints developed by Bodnaruk 

et al. (2015).20  We define less (more) financially constrained firms as those with below- 

(above-) median values of this measure and estimate the DDD model that includes an 

interaction between the Weaker CNC Enforcement and the conditioning variable (i.e., Low 

Financial Constraints). Column (1) of Table 9 shows that the coefficient on the interaction 

term is significant and negative. In line with our conjecture, this result suggests that the effect 

of weakened CNC enforceability on corporate emissions is more pronounced for firms with 

lower levels of financial constraints, i.e., those firms who could benefit most from a more 

mobile labor force.  

It is arguable that competition motivates companies to adopt rivals’ knowledge and 

technologies where they can (Henderson and Cockburn, 1996), which catalyzes knowledge 

spillovers. We predict that firms operating in highly competitive markets will stand to benefit 

more from the knowledge spillover effects induced by greater labor mobility and hence will 

 
20 Since traditional measures of financial constraints based on accounting data could be highly correlated with 

production levels, which are directly related to corporate emissions (Xu and Kim, 2022), we use the text-based 

measure developed by Bodnaruk et al. (2015) to avoid endogeneity issues. 
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mitigate their emissions more significantly, compared to those firms facing lower competitive 

pressure. We employ two text-based measures of product market competition, namely, product 

fluidity (Hoberg et al., 2014) and similarity (Hoberg and Phillips, 2016).21 To construct the 

conditioning variables, we set High Product Fluidity and High Product Similarity to one (zero) 

if a firm has a value of product fluidity and similarity above (below) the sample median, 

respectively. We then interact the Weaker CNC Enforcement indicator with each conditioning 

variable and present the DDD regression results in columns (2) and (3) of Table 9. Consistent 

with our prediction, we find that, in response to weaker CNC enforcement, firms facing higher 

degrees of product market competition seem to benefit more from greater labor mobility, and 

be able to reduce their emissions significantly more than those with lower levels of competition. 

[Insert Table 9 about here] 

 

4.4. Channel Tests: Green Innovation and Investment 

As discussed in Section 2, greater labor mobility is associated with a reduction in corporate 

emissions because more mobile labor markets foster knowledge spillovers in the corporate 

sector that ultimately boost corporate abatement activities. To provide direct evidence on these 

economic channels, in our final test, we analyze the effect of weaker CNC enforcement on 

green innovation and green investment.  

As detailed in Section 3.1.2, we classify a patent as “green” using the approaches in Li 

et al. (2021a) and Cohen et al. (2022). We replace the dependent variable in Eq. (1) with a 

green innovation measure and conduct the DID regression at the firm level. First, we use the 

number of green patents a firm generates (Log (1+Green Patent)) to measure the quantity of 

 
21 The fluidity measure captures rival firms’ changes in products and services surrounding the focal firm, and the 

similarity measure gauges the similarity of rival firms’ products and services relative to the focal firm.  
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green innovation. The regression results reported in columns (1) and (2) of Table 10 show a 

significant and positive relation between lower CNC enforceability and the number of green 

patents. In terms of economic magnitude, we find that weaker CNC enforcement leads to an 

increase of 11.0−13.6% in the number of green patents. Second, we employ the number of 

forward patent citations (Log (1+Green Citation)) to proxy for the quality of green innovation. 

In columns (3) and (4) of Table 10, we find that the citations received by green patents increase 

significantly by 19.5−20.2% following decreases in CNC enforceability. Overall, the results in 

Table 10 support our prediction that firms can take advantage of enhanced knowledge 

spillovers in more mobile labor markets by increasing both the quantity and quality of their 

green innovation.    

[Insert Table 10 about here] 

We next examine the effect of less enforceable CNCs on green investment. To this end, 

we estimate the DID model as in Eq. (1) and use the following measures of green investment 

as the dependent variable, namely, Scrubber Dummy, Log (1+Coal Quantities), Log 

(1+Petroleum Quantities), and Pct. Clean Energy (Grinstein and Larkin, 2021). Plant-level 

controls, such as Scrubber Dummy and Net Generation, are further included in the regression 

models following Grinstein and Larkin (2021).22 We first focus on whether a plant invests in 

at least one FGD unit (Scrubber Dummy), an important emission control technology. The 

regression results presented in column (1) of Table 11 suggest that plants significantly increase 

their investments in FGD technologies following decreases in CNC enforceability. Next, we 

investigate whether plants change their fuel mix in response to decreased enforcement of CNCs 

and report the results in columns (2) to (4) of Table 11. We find that when CNCs are less 

enforceable, plants rely significantly less on polluting fuels, including coal (Log (1+Coal 

 
22 In column (1) of Table 11, we do not include Scrubber Dummy as the plant-level control variable.  
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Quantities)) and petroleum (Log (1+Petroleum Quantities)), while they significantly use 

cleaner energy sources (Pct. Clean Energy), such as natural gas, solar, and other renewables. 

Taken together, the results in Table 11 indicate that, the knowledge spillover effects of mobile 

labor markets enable firms to invest significantly more in abatement activities that help to 

reduce emissions. 

[Insert Table 11 about here] 

 

5. Conclusion 

This study provides novel evidence of the role of labor mobility in enhancing corporate 

environmental performance, particularly emissions of air pollutants. To establish causality, we 

employ a DID approach by exploiting the (staggered) state-level changes in CNC 

enforceability that capture exogenous variations in labor mobility. Consistent with the 

hypothesis that knowledge spillovers created by a more mobile labor force boost green 

technologies and green investment and hence reduce air pollutant emissions, we find that 

weakened CNC enforcement indeed leads to lower corporate emissions. This effect is more 

pronounced for firms with greater reliance on skilled labor and intangible capital, as well as 

those firms experiencing lower levels of financial constraints and greater competitive pressure. 

Our analysis further shows that, following decreases in CNC enforceability, firms benefit from 

the knowledge spillover effects of greater labor mobility and experience a marked increase in 

their green innovation and green investment, thus providing further empirical support for the 

proposed economic channels. 

This paper highlights the need to study how labor market frictions influence corporate 

environmental decisions and outcomes. Our evidence supports the view that more mobile labor 

markets foster green innovation and bring about tangible social and environmental benefits. In 

the face of the current climate crisis, it is thus important for policymakers to consider the 
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benefits of relaxing labor mobility restrictions, which might help to tackle environmental issues 

and global warming through knowledge spillovers.  
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Table 1. Changes in CNC Enforcement 

This table reports the CNC enforcement changes during our sample period from 2010 to 2019 obtained from 

Ewens and Marx (2018). 

  

State  Year Case CNC Enforcement  

Georgia 2010 Restrictive Covenants Act Strengthened 

South Carolina 2010 Invs, Inc. v. Century Builders of Piedmont, Inc. Weakened 

Colorado 2011 Lucht's Concrete Pumping, Inc. v. Horner Strengthened 

Illinois  2011 Reliable Fire Equipment Co. v. Arredondo Strengthened 

Texas 2011 Marsh v. Cook Strengthened 

New Hampshire 2012 N.H. Rev. Stat. Ann. Sec. 275-70 Weakened 

Kentucky 2014 Creech v. Brown Weakened 
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Table 2. Summary Statistics of the Main Variables 

This table reports the summary statistics of the main variables used in our empirical analysis. The sample consists of 

AMPD plants and Compustat firms from 2010 to 2019. The sample used for the baseline results includes 5,240 plant-years 

and 575 firm-years. Appendix A provides variable definitions. The continuous variables, except macroeconomic ones, are 

winsorized at their 1st and 99th percentiles. Dollar values are expressed in 1999 dollars.  

 

  N Mean P25 Median P75 Std. Dev. 

Emissions Variables (Plant-level)       

  CO2_R (short tons/$m) 5064 313.585 10.402 79.631 295.323 744.786 

  SO2_R (tons/$m) 5147 0.408 0.000 0.001 0.122 1.422 

  NOx_R (tons/$m) 5240 0.205 0.004 0.022 0.147 0.626 

  CO2 (thousands of short tons) 5064 2152.169 115.430 894.519 2599.871 3218.835 

  SO2 (thousands of tons) 5147 2.569 0.001 0.008 1.441 6.303 

  NOx (thousands of tons) 5240 1.378 0.049 0.190 1.369 2.530 

Control Variables (Firm- and 

Plant-level)       

  Total Assets ($m) 575 37908.061 4502.248 15540.666 34104.500 75182.794 

  Leverage 575 0.408 0.315 0.409 0.490 0.160 

  Fixed Assets 575 0.615 0.559 0.666 0.744 0.180 

  Market-to-Book 575 1.247 1.101 1.197 1.338 0.230 

  ROA 575 0.091 0.076 0.086 0.104 0.031 

  Firm Age 575 52.972 54.000 60.000 63.000 17.684 

  State Unemployment Rate 5240 0.067 0.048 0.065 0.084 0.023 

  Log (State GDP per Capita) 5240 10.829 10.713 10.839 10.946 0.177 

  State GDP Growth 5240 0.030 0.020 0.036 0.047 0.029 

  Democratic Votes 5240 0.454 0.385 0.460 0.523 0.105 
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Table 3. Weaker CNC Enforcement and Emissions 

This table reports the results from the OLS regressions relating plant emissions to weaker CNC enforcement during 

2010–2019. The dependent variables are Log (1+CO2_R), Log (1+SO2_R), and Log (1+NOx_R). The variable Weaker 

CNC Enforcement is an indicator variable equal to one if a plant is in a state that weakened CNC enforceability in a year, 

minus one if a plant is in a state that strengthened CNC enforceability in a year, and zero otherwise. Appendix A provides 

variable definitions. The continuous variables, except macroeconomic ones, are winsorized at their 1st and 99th 

percentiles. Dollar values are expressed in 1999 dollars. Standard errors are clustered at the state level (t-statistics are in 

parentheses). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.  

 

  Log (1+CO2_R)   Log (1+SO2_R)   Log (1+NOx_R) 

  (1) (2)  (3) (4)  (5) (6) 

Weaker CNC Enforcement −0.254*** −0.181***  −0.144*** −0.126***  −0.040*** −0.034*** 

 (−4.85) (−2.80)  (−5.71) (−4.49)  (−5.25) (−4.30) 

Log Total Assets  −0.855***   −0.110***   −0.101*** 

  (−14.73)   (−4.38)   (−5.43) 

Leverage  0.017   −0.079   −0.053 

  (0.06)   (−0.66)   (−0.63) 

Fixed Assets  0.302   −0.120   −0.069 

  (0.84)   (−0.69)   (−0.68) 

Market-to-Book  −0.745***   −0.210**   −0.119** 

  (−2.70)   (−2.09)   (−2.36) 

ROA  −0.695   −0.602   −0.517* 

  (−0.76)   (−1.52)   (−1.74) 

Firm Age  0.014***   0.003***   0.002*** 

  (3.42)   (4.12)   (2.78) 

State Unemployment Rate  −3.766   0.623   −0.859 

  (−1.31)   (0.65)   (−1.20) 

Log (State GDP per Capita)  −1.155*   −0.460**   −0.301** 

  (−1.82)   (−2.12)   (−2.46) 

State GDP Growth  1.712***   0.476**   0.271*** 

  (3.28)   (2.06)   (3.13) 

Democratic Votes  −0.460   0.231*   0.053 

  (−1.41)   (1.80)   (1.02) 

Plant FE Yes Yes  Yes Yes  Yes Yes 

Industry  Year FE Yes Yes  Yes Yes  Yes Yes 

Observations 5,064 5,064  5,147 5,147  5,240 5,240 

R-squared 0.924 0.938   0.836 0.844   0.877 0.890 
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Table 4. Hazard Model of Changes in CNC Enforcement 

This table reports the results from a Cox proportional hazard model, where a “failure event” is 

a change in CNC enforcement in a state. The sample period is from 2010 to 2019. The 

observations of a state are excluded from the sample once the state changes its CNC 

enforceability. Independent variables are measured as of year t−1. Appendix A provides 

variable definitions. All the independent variables, except indicator variables, are normalized 

to have a mean of zero and a standard deviation of one. Dollar values are expressed in 1999 

dollars. Standard errors are clustered at the state level (z-statistics are in parentheses). *, **, 

and *** denote significance at the 10%, 5%, and 1% levels, respectively.  

 

  (1) (2) (3) 

State CO2 Emissions 0.905 0.818 0.699 

 (1.64) (1.55) (1.20) 

State SO2 Emissions 0.069 0.322 0.307 

 (0.18) (0.94) (0.74) 

State NOx Emissions −0.571 −0.745 −0.645 

 (−0.74) (−0.93) (−0.69) 

Wrongful Discharge Laws  0.069 0.115 

  (0.24) (0.36) 

State Union Membership  −0.477 −0.573 

  (−1.38) (−1.09) 

State Unemployment Rate   0.506 

   (0.56) 

Log (State GDP per Capita)   0.614 

   (0.79) 

State GDP Growth   0.037 

   (0.07) 

Democratic Votes   −0.151 

   (−0.28) 

Year FE Yes Yes Yes 

Observations 389 386 386 
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Table 5. Weaker CNC Enforcement and  

the Timing of Carbon Emissions Changes 

This table reports the results from the OLS regressions relating plant carbon 

emissions to weaker CNC enforcement during 2010–2019. The dependent variable 

is Log (1+CO2_R). The variable Weaker CNC Enforcement-2 is an indicator variable 

equal to one (minus one) if a plant is in a state that would weaken (strengthen) its 

CNC enforceability in two years and zero otherwise; Weaker CNC Enforcement-1 is 

an indicator variable equal to one (minus one) if a plant is in a state that would 

weaken (strengthen) its CNC enforceability in one year and zero otherwise; Weaker 

CNC Enforcement0 is an indicator variable equal to one (minus one) if a plant is in 

a state that weakens (strengthens) its CNC enforceability in the current year, and 

zero otherwise; Weaker CNC Enforcement+1 is an indicator variable equal to one 

(minus one) if a plant is in a state that weakened (strengthened) its CNC 

enforceability the year before, and zero otherwise; Weaker CNC Enforcement2+ is 

an indicator variable equal to one (minus one) if a plant is in a state that weakened 

(strengthened) its CNC enforceability two or more years before and, zero otherwise. 

Controls include Log Total Assets, Leverage, Fixed Assets, Market-to-Book, ROA, 

Firm Age, State Unemployment Rate, Log (State GDP per Capita), State GDP 

Growth, and Democratic Votes. The coefficients on all the control variables are 

omitted for brevity. Appendix A provides variable definitions. The continuous 

variables, except macroeconomic ones, are winsorized at their 1st and 99th 

percentiles. Dollar values are expressed in 1999 dollars. Standard errors are clustered 

at the state level (t-statistics are in parentheses). *, **, and *** denote significance 

at the 10%, 5%, and 1% levels, respectively.  

 

  Log (1+CO2_R) 

  (1) (2) 

Weaker CNC Enforcement-2 0.257 0.005 

 (1.00) (0.03) 

Weaker CNC Enforcement-1 −0.011 −0.165 

 (−0.11) (−1.44) 

Weaker CNC Enforcement0 −0.235** −0.300*** 

 (−2.38) (−2.88) 

Weaker CNC Enforcement+1 −0.209*** −0.221** 

 (−2.73) (−2.13) 

Weaker CNC Enforcement2+ −0.292** −0.289** 

 (−2.53) (−2.29) 

Controls No Yes 

Plant FE Yes Yes 

Industry  Year FE Yes Yes 

Observations 5,064 5,064 

R-squared 0.924 0.938 
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Table 6. Robustness: Propensity Score Matched Sample 

Panel A of this table tabulates the means of the propensity scores and the firm-

level control variables across the treated and control groups for the propensity 

score matched sample. Panel B of reports the results from the OLS regressions 

relating plant carbon emissions to weaker CNC enforcement during 2010–2019. 

The dependent variable is Log (1+CO2_R). The variable Weaker CNC 

Enforcement is an indicator variable equal to one if a plant is in a state that has 

weakened CNC enforceability, minus one if a plant is in a state that has 

strengthened CNC enforceability, and zero otherwise. For the matching 

procedure, we treat each year’s CNC enforcement changes as a separate event 

and retain all firm-year observations one year before the event. We then estimate 

the propensity scores using a probit model for this sample, including the full set 

of firm-level controls (i.e., Log Total Assets, Leverage, Fixed Assets, Market-to-

Book, ROA, and Firm Age). In addition, for each event we match each treated 

firm to a control firm selected within the same three-digit NAICS cluster, without 

replacement, and based on the closest propensity score (within 0.1). Controls 

include Log Total Assets, Leverage, Fixed Assets, Market-to-Book, ROA, Firm 

Age, State Unemployment Rate, Log (State GDP per Capita), State GDP Growth, 

and Democratic Votes. The coefficients on all the control variables are omitted 

for brevity. Appendix A provides variable definitions. The continuous variables, 

except macroeconomic ones, are winsorized at their 1st and 99th percentiles. 

Dollar values are expressed in 1999 dollars. Standard errors are clustered at the 

state level (t-statistics are in parentheses). *, **, and *** denote significance at 

the 10%, 5%, and 1% levels, respectively.  

 

Panel A: Covariate Balance of the Matched Sample 

  

Control Group 

(Obs.=90) 

Treated Group 

(Obs.=90) 

Mean 

Difference 
p-value 

Propensity Score 0.239 0.241 −0.002 0.849 

Log Total Assets 10.033 9.925 0.108 0.304 

Leverage 0.536 0.542 −0.006 0.775 

Fixed Assets 0.627 0.649 −0.022 0.259 

Market-to-Book 1.035 1.044 −0.009 0.668 

ROA 0.085 0.088 −0.003 0.445 

Firm Age 43.278 43.733 −0.456 0.885 

Panel B: DID Regression Using Matched Sample 

  Log (1+CO2_R) 

  (1) (2) 

Weaker CNC Enforcement −0.208*** −0.144** 

 (−3.72) (−2.36) 

Controls No Yes 

Plant FE Yes Yes 

Industry  Year FE Yes Yes 

Observations 1,437 1,437 

R-squared 0.949 0.958 
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Table 7. Robustness: Using Samples Based on Neighboring States or Firm 

Headquarters Locations, and Using Stacked Regressions 

This table reports the results from the OLS regressions relating plant carbon emissions to weaker CNC enforcement during 2010–2019. 

The dependent variable is Log (1+CO2_R). The variable Weaker CNC Enforcement is an indicator variable equal to one if a plant is in a 

state that weakened CNC enforceability, minus one if a plant is in a state that strengthened CNC enforceability, and zero otherwise. In 

columns (1) to (2), we include plants located both in the states with CNC enforcement changes and their neighboring states. In columns 

(3) to (4), we redefine Weaker CNC Enforcement, using firm headquarters, as an indicator variable equal to one if a firm is headquartered 

in a state that weakened CNC enforceability, minus one if a firm is headquartered in a state that strengthened CNC enforceability, and 

zero otherwise. In columns (5) to (6), we use the stacked regression approach to estimate the staggered DID model (Baker et al., 2022). 

Controls include Log Total Assets, Leverage, Fixed Assets, Market-to-Book, ROA, Firm Age, State Unemployment Rate, Log (State GDP 

per Capita), State GDP Growth, and Democratic Votes. The coefficients on all the control variables are omitted for brevity. Appendix A 

provides variable definitions. The continuous variables, except macroeconomic ones, are winsorized at their 1st and 99th percentiles. 

Dollar values are expressed in 1999 dollars. Standard errors are clustered at the state level (t-statistics are in parentheses). *, **, and *** 

denote significance at the 10%, 5%, and 1% levels, respectively.  

 

  Log (1+CO2_R) 

 Neighboring States   Headquarters Locations   Stacked Regressions 

  (1) (2)   (3) (4)   (5) (6) 

Weaker CNC Enforcement −0.238*** −0.167**  −0.221* −0.161**  −0.257*** −0.204*** 

 (−4.30) (−2.62)  (−1.89) (−2.25)  (−4.64) (−3.39) 

Controls No Yes  No Yes  No Yes 

Plant FE Yes Yes  Yes Yes  No No 

Industry  Year FE Yes Yes  Yes Yes  Yes Yes 

Plant  Cohort FE No No  No No  Yes Yes 

Year  Cohort FE No No  No No  Yes Yes 

Observations 4,458 4,458  5,026 5,026  29,904 29,904 

R-squared 0.923 0.939   0.937 0.941   0.925 0.938 
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Table 8. Moderating Effects of Labor Skills and Intangible Capital 

This table reports the results from the OLS regressions relating plant carbon emissions to weaker CNC enforcement during 

2010–2019. The dependent variable is Log (1+CO2_R). The variable Weaker CNC Enforcement is an indicator variable equal 

to one if a plant is in a state that weakened CNC enforceability, minus one if a plant is in a state that strengthened CNC 

enforceability, and zero otherwise; High Labor Skills is an indicator variable that is one if a plant has an above-median value 

of the labor skills measure computed following Ghaly et al. (2017), and zero otherwise; High Knowledge Capital is an 

indicator variable that is one if a firm has an above-median value of knowledge capital scaled by the book value of total assets 

(Peters and Taylor, 2017), and zero otherwise; High R&D Expense is an indicator variable equal to one if a firm has an above-

median value of R&D expense scaled by the book value of total assets, and zero otherwise; High SG&A Expense is an indicator 

variable equal to one if a firm has an above-median value of SG&A expense scaled by the book value of total assets, and zero 

otherwise. Each specification includes all interaction terms, though some interaction terms are not tabulated for brevity. 

Controls include Log Total Assets, Leverage, Fixed Assets, Market-to-Book, ROA, Firm Age, State Unemployment Rate, Log 

(State GDP per Capita), State GDP Growth, and Democratic Votes. The coefficients on all the control variables are omitted 

for brevity. Appendix A provides variable definitions. The continuous variables, except macroeconomic ones, are winsorized 

at their 1st and 99th percentiles. Dollar values are expressed in 1999 dollars. Standard errors are clustered at the state level (t-

statistics are in parentheses). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.  

 

  Log (1+CO2_R) 

  (1) (2) (3) (4) 

Weaker CNC Enforcement  High Labor Skills −0.086** 
  

 

 (−2.32) 
  

 

Weaker CNC Enforcement  High Knowledge Capital   −0.373*   

  (−1.96)   

Weaker CNC Enforcement  High R&D Expense   −0.574***  

   (−4.29)  

Weaker CNC Enforcement  High SG&A Expense    −0.281* 

    (−1.73) 

Controls Yes Yes Yes Yes 

Plant FE Yes Yes Yes Yes 

Industry  Year FE Yes Yes Yes Yes 

State  Year FE Yes Yes Yes Yes 

Observations 3,899 4,810 4,779 4,779 

R-squared 0.955 0.939 0.949 0.950 
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Table 9. Moderating Effects of Financial Constraints and Product Market Competition 

This table reports the results from the OLS regressions relating plant carbon emissions to weaker CNC 

enforcement during 2010–2019. The dependent variable is Log (1+CO2_R). The variable Weaker CNC 

Enforcement is an indicator variable equal to one if a plant is in a state that weakened CNC enforceability, 

minus one if a plant is in a state that strengthened CNC enforceability, and zero otherwise; Low Financial 

Constraints is an indicator variable equal to one if a firm has a below-median value of the financial constraints 

measure (Bodnaruk et al., 2015), and zero otherwise; High Product Fluidity is an indicator variable equal to 

one if a firm has an above-median value of product fluidity (Hoberg et al., 2014), and zero otherwise; High 

Product Similarity is an indicator variable equal to one if a firm has an above-median value of product 

similarity (Hoberg and Phillips, 2016), and zero otherwise. Each specification includes all interaction terms, 

though some interaction terms are not tabulated for brevity. Controls include Log Total Assets, Leverage, 

Fixed Assets, Market-to-Book, ROA, Firm Age, State Unemployment Rate, Log (State GDP per Capita), State 

GDP Growth, and Democratic Votes. The coefficients on all the control variables are omitted for brevity. 

Appendix A provides variable definitions. The continuous variables, except macroeconomic ones, are 

winsorized at their 1st and 99th percentiles. Dollar values are expressed in 1999 dollars. Standard errors are 

clustered at the state level (t-statistics are in parentheses). *, **, and *** denote significance at the 10%, 5%, 

and 1% levels, respectively.  

 

   Log (1+CO2_R) 

  (1) (2) (3) 

Weaker CNC Enforcement  Low Financial Constraints −0.188*   

 (−1.88)   

Weaker CNC Enforcement  High Product Fluidity  −0.262*  

  (−1.80)  

Weaker CNC Enforcement  High Product Similarity   −0.210** 

   (−2.06) 

Controls Yes Yes Yes 

Plant FE Yes Yes Yes 

Industry  Year FE Yes Yes Yes 

State  Year FE Yes Yes Yes 

Observations 4,681 4,550 4,556 

R-squared 0.950 0.949 0.949 
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Table 10. Weaker CNC Enforcement and Green Innovation 

This table reports the results from the OLS regressions relating corporate green innovation to 

weaker CNC enforcement during 2010–2019. The dependent variables are Log (1+Green Patent) 

and Log (1+Green Citation). The variable Weaker CNC Enforcement is an indicator variable equal 

to one if a firm is headquartered in a state that has decreased CNC enforceability, minus one if a 

firm is headquartered in a state that has increased CNC enforceability, and zero otherwise. In 

columns (1) and (3) (columns (2) and (4)), we identify green patents following Li et al. (2021a) 

(Cohen et al. (2022)). Controls include Log Total Assets, Leverage, Fixed Assets, Market-to-Book, 

ROA, Firm Age, State Unemployment Rate, Log (State GDP per Capita), State GDP Growth, and 

Democratic Votes. The coefficients on all the control variables are omitted for brevity. Appendix 

A provides variable definitions. The continuous variables, except macroeconomic ones, are 

winsorized at their 1st and 99th percentiles. Dollar values are expressed in 1999 dollars. Standard 

errors are clustered at the state level (t-statistics are in parentheses). *, **, and *** denote 

significance at the 10%, 5%, and 1% levels, respectively.  

 

  Log (1+Green Patent)   Log (1+Green Citation) 

  (1) (2)   (3) (4) 

Weaker CNC Enforcement 0.110** 0.136**  0.202*** 0.195** 

 (2.12) (2.29)  (2.80) (2.64) 

Controls Yes Yes  Yes Yes 

Firm FE Yes Yes  Yes Yes 

Industry  Year FE Yes Yes  Yes Yes 

Observations 458 458  458 458 

R-squared 0.954 0.956   0.882 0.864 
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Table 11. Weaker CNC Enforcement and Green Investment 

This table reports the results from the OLS regressions relating plants’ green investment to weaker CNC 

enforcement during 2010–2019. The dependent variables are Scrubber Dummy, Log (1+Coal Quantities), 

Log (1+Petroleum Quantities), and Pct. Clean Energy. The variable Weaker CNC Enforcement is an 

indicator variable equal to one if a plant is in a state that weakened CNC enforceability, minus one if a 

plant is in a state that strengthened CNC enforceability, and zero otherwise. Firm Controls include Log 

Total Assets, Leverage, Fixed Assets, Market-to-Book, ROA, Firm Age, State Unemployment Rate, Log 

(State GDP per Capita), State GDP Growth, and Democratic Votes. In Column (1), Plant Controls include 

Net Generation, whereas in Columns (2) to (4), Plant Controls include Scrubber Dummy and Net 

Generation. The coefficients on all the control variables are omitted for brevity. Appendix A provides 

variable definitions. The continuous variables, except macroeconomic ones, are winsorized at their 1st and 

99th percentiles. Dollar values are expressed in 1999 dollars. Standard errors are clustered at the state level 

(t-statistics are in parentheses). *, **, and *** denote significance at the 10%, 5%, and 1% levels, 

respectively.  

 

  (1) (2) (3) (4) 

  

Scrubber 

Dummy 

Log (1+Coal 

Quantities) 

Log (1+Petroleum 

Quantities) 

Pct. Clean 

Energy 

Weaker CNC Enforcement 0.042*** −0.895*** −0.481** 0.039** 

 (4.55) (−6.08) (−2.14) (2.38) 

Firm Controls Yes Yes Yes Yes 

Plant Controls Yes Yes Yes Yes 

Plant FE Yes Yes Yes Yes 

Industry  Year FE Yes Yes Yes Yes 

Observations 5,187 5,200 5,200 5,199 

R-squared 0.914 0.923 0.909 0.953 
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Appendix A. Variable Definitions 

Variable Description 

(For definitions of the data items in parentheses, refer to 

Compustat designations) 

Emissions  

CO2 Carbon dioxide emissions in thousands of short tons, obtained 

from the Air Markets Program Data (AMPD).  

CO2_R CO2 emissions defined above scaled by firm total revenue (revt) 

in millions of dollars.  

NOx Nitrogen oxide emissions in thousands of metric tons, obtained 

from the AMPD. 

NOx_R NOx emissions defined above scaled by firm total revenue (revt) 

in millions of dollars.  

SO2 Sulfur dioxide emissions in thousands of metric tons, obtained 

from the AMPD. 

SO2_R SO2 emissions defined above scaled by firm total revenue (revt) 

in millions of dollars.  

Control, Conditioning, and Other Dependent Variables 

Acquisition Expenditures The ratio of acquisition expenditures (aqc) to total assets (at). 

Capital Expenditures The ratio of capital expenditures (capx) to total assets (at). 

Coal Quantities The total amount (in short tons) of coal a plant uses in a year. The 

data are obtained from the Energy Information Administration 

(EIA) form EIA-923.  

Firm Age The number of years since a firm first appeared in the Compustat 

database. 

Fixed Assets The ratio of property, plant, and equipment (ppent) to book value 

of total assets (at). 

Green Citation The number of forward citations of a firm’s green patents. We 

identify green patents following the methods of Li et al. (2021a) 

and Cohen et al. (2022), respectively. 

Green Patent The number of successful green patent applications filed by a 

firm. We identify green patents following the methods of Li et al. 

(2021a) and Cohen et al. (2022), respectively. 

High Knowledge Capital An indicator variable equal to one if a firm has an above-median 

value of knowledge capital scaled by the book value of total assets 

(Peters and Taylor, 2017), and zero otherwise. 

High Labor Skills An indicator variable equal to one if a plant has an above-median 

value of labor skills measured following Ghaly et al. (2017), and 

zero otherwise. 

High Product Fluidity An indicator variable equal to one if a firm has an above-median 

value of the text-based measure of product market fluidity 

(Hoberg et al., 2014), and zero otherwise. The product market 

fluidity measure is obtained from the Hoberg-Phillips Data 

Library. 

High Product Similarity An indicator variable equal to one if a firm has an above-median 

value of the text-based measure of product similarity (Hoberg and 

Phillips, 2016), and zero otherwise. The product similarity 

measure is obtained from the Hoberg-Phillips Data Library. 

High R&D Expense An indicator variable equal to one if a firm has an above-median 

value of R&D expense scaled by the book value of total assets, 

and zero otherwise. 
High SG&A Expense An indicator variable equal to one if a firm has an above-median 

value for SG&A expense scaled by the book value of total assets, 

and zero otherwise. 
KLD Environment Index The total number of strengths regarding the natural environment 

obtained from the MSCI ESG KLD STATS (formerly KLD) 

database. 
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KLD Index The total number of strengths regarding employees, customers, 

the natural environment, and communities obtained from the 

MSCI ESG KLD STATS (formerly KLD) database. 

Leverage The book value of long-term debt (dltt) plus debt in current 

liabilities (dlc) divided by market value of debt and equity (i.e., 

long-term debt (dltt) plus debt in current liabilities (dlc) plus 

market value of equity (prcc_f * csho)). 

Log Total Assets The natural logarithm of the book value of total assets (at) in 

millions of 1999 dollars. 

Low Financial Constraints  An indicator variable equal to one if a firm has a below-median 

value of a text-based measure of financial constraints (Bodnaruk 

et al., 2015), and zero otherwise.  

Market-to-Book Book value of liabilities (dlc + dltt + pstkl) plus market value of 

equity (prcc_f * csho) divided by total assets (at). 

Net Generation  The total amount (in Megawatt hour) of electricity a plant 

generated. The data are obtained from the Energy Information 

Administration (EIA) form EIA-923. 

Net KLD Environment Index An index calculated by subtracting the total number of concerns 

from the total number of strengths regarding the natural 

environment obtained from MSCI ESG KLD STATS (formerly 

KLD) database. 

Net KLD Index An index calculated by subtracting the total number of concerns 

from the total number of strengths regarding employees, 

customers, the natural environment, and communities obtained 

from the MSCI ESG KLD STATS (formerly KLD) database. 
Pct. Clean Energy The fraction of the amount of clean energy (e.g., natural gas solar, 

and other renewables) to total energy a plant uses in a year. The 

data are obtained from the Energy Information Administration 

(EIA) form EIA-923. 

Democratic Votes The fraction of a state’s general-election votes for the Democratic 

Party in a year. 

Petroleum Quantities The total amount (in barrels) of petroleum a plant uses in a year. 

The data are obtained from the Energy Information 

Administration (EIA) form EIA-923.  

R&D Expenses Research and development expenses (xrd) as a proportion of total 

assets (at). 

R&D Dummy An indicator variable set to one if a firm did not report research 

and development expenses (xrd), else zero. 

ROA Operating income before depreciation (oibdp) divided by the 

book value of total assets (at). 

Scrubber Dummy An indicator variable set to one if a plant has at least one flue-gas 

desulfurization (FGD) unit in operation in a year, else zero. The 

data are obtained from the Energy Information Administration 

(EIA) form EIA-923. 

State GDP Growth The annual GDP growth rate of a state over a year. 

State CO2 Emissions Total carbon emissions of a state in a year (in thousands of short 

tons) obtained from the Air Markets Program Data (AMPD). 

State GDP Per Capita A state’s GDP (in million dollars) divided by its total population 

in a year. 

State NOx Emissions Total NOx emissions of a state in a year (in thousands of metric 

tons) obtained from the Air Markets Program Data (AMPD). 

State SO2 Emissions Total SO2 emissions of a state in a year (in thousands of metric 

tons) obtained from the Air Markets Program Data (AMPD). 

State Unemployment Rate The unemployment rate of a state in a year. 

State Union Membership The percentage of workers covered by a collective bargaining 

agreement in a state in a year. 

Wrongful Discharge Laws The number of wrongful discharge laws (i.e., the good faith 

exception, the implied contract exception, and the public policy 

exception) that a state has recognized in a year. 
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Online Appendix OA1. Matching Data from AMPD and Compustat 

 

To merge the data retrieved from AMPD and Compustat, we apply a fuzzy-matching procedure 

using company names. First, to improve matching accuracy, we retrieve historical company 

names from the Center for Research in Security Prices (CRSP) database and the COMPHIST 

file provided by the CRSP-Compustat merged database (Dang et al., 2022; Xu and Kim, 2022). 

Second, we follow recent literature (e.g., Akey and Appel, 2021; Hsu et al., 2021; Xu and Kim, 

2022) to standardize the company names for AMPD and Compustat firms. Specifically, we 

convert company names into upper case and remove all punctuation, special characters, and 

corporate designators (e.g., “LLC”, “INC”, “CORP”, “COMPANY”, “CORPORATION”). 

Third, based on the standardized company names, we use a Stata record-linking algorithm 

(reclink2), developed by Wasi and Flaaen (2015) to produce matching scores for all possible 

company-name pairs between the AMPD and Compustat. For each match, we retain the five 

pairs having the highest matching scores and, at the same time, require these scores to be equal 

to or above 0.95. Finally, we manually check all the retained pairs to determine the most 

appropriate matches.  
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Figure OA1. Distribution of the T-statistics of the Coefficient in Placebo Tests 

This figure plots the distribution of the t-statistics of the coefficient on the variable Weaker CNC Enforcement 

generated from the placebo tests that randomize the assignment of CNC enforcement changes to states (sampled 

without replacement) and years. We estimate the OLS regressions relating plant carbon emissions (Log 

(1+CO2_R)) to the pseudo CNC-enforcement-change events during 2010–2019. We repeat this procedure for 

5,000 times, store the t-statistics of coefficient estimates, and plot their distribution below. The red vertical line 

represents the t-statistic generated from our baseline regression. 
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Table OA1. Robustness: Baseline Results with Different Fixed Effects 

This table reports the results from the OLS regressions relating plant emissions to weaker CNC enforcement during 

2010–2019. The dependent variables are Log (1+CO2_R), Log (1+SO2_R), and Log (1+NOx_R). The variable Weaker 

CNC Enforcement is an indicator variable equal to one if a plant is in a state that has decreased CNC enforceability, 

minus one if a plant is located in a state that has increased CNC enforceability, and zero otherwise. Controls include Log 

Total Assets, Leverage, Fixed Assets, Market-to-Book, ROA, Firm Age, State Unemployment Rate, Log (State GDP per 

Capita), State GDP Growth, and Democratic Votes. The coefficients on all the control variables are omitted for brevity. 

Appendix A provides variable definitions. The continuous variables, except macroeconomic ones, are winsorized at their 

1st and 99th percentiles. Dollar values are expressed in 1999 dollars. Standard errors are clustered at the state level (t-

statistics are in parentheses). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.  

 

  Log (1+CO2_R)   Log (1+SO2_R)   Log (1+NOx_R) 

  (1) (2)  (3) (4)  (5) (6) 

Weaker CNC Enforcement −0.264*** −0.197***  −0.145*** −0.129***  −0.037*** −0.034*** 

 (−5.16) (−3.17)  (−5.84) (−4.60)  (−4.44) (−3.98) 

Controls No Yes  No Yes  No Yes 

Plant FE Yes Yes  Yes Yes  Yes Yes 

Year FE Yes Yes  Yes Yes  Yes Yes 

Observations 5,118 5,118  5,196 5,196  5,311 5,311 

R-squared 0.924 0.938   0.836 0.844   0.876 0.889 
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Table OA2. Weaker CNC Enforcement and Emission Levels 

This table reports the results from the OLS regressions relating plant emission levels to weaker CNC enforcement for 

during 2010–2019. The dependent variables are Log (1+CO2), Log (1+SO2), and Log (1+NOx). The variable Weaker 

CNC Enforcement is an indicator variable equal to one if a plant is in a state that has weakened CNC enforceability, 

minus one if a plant is in a state that has increased CNC enforceability, and zero otherwise. Controls include Log Total 

Assets, Leverage, Fixed Assets, Market-to-Book, ROA, Firm Age, State Unemployment Rate, Log (State GDP per 

Capita), State GDP Growth, and Democratic Votes. The coefficients on all the control variables are omitted for brevity. 

Appendix A provides variable definitions. The continuous variables, except macroeconomic ones, are winsorized at their 

1st and 99th percentiles. Dollar values are expressed in 1999 dollars. Standard errors are clustered at the state level (t-

statistics are in parentheses). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.  

 

  Log (1+CO2)   Log (1+SO2)   Log (1+NOx) 

  (1) (2)  (3) (4)  (5) (6) 

Weaker CNC Enforcement −0.231*** −0.192***  −0.478*** −0.426**  −0.218*** −0.212*** 

 (−3.46) (−3.60)  (−3.61) (−2.27)  (−5.59) (−3.52) 

Controls No Yes  No Yes  No Yes 

Plant FE Yes Yes  Yes Yes  Yes Yes 

Industry  Year FE Yes Yes  Yes Yes  Yes Yes 

Observations 5,064 5,064  5,147 5,147  5,240 5,240 

R-squared 0.923 0.924   0.932 0.932   0.918 0.919 
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Table OA3. Robustness: Controlling for CSR Scores 

This table reports the results from the OLS regressions relating plant carbon emissions to weaker 

CNC enforcement during 2010–2019. The dependent variable is Log (1+CO2_R). The variable 

Weaker CNC Enforcement is an indicator variable equal to one if a plant is in a state that has 

decreased CNC enforceability, minus one if a plant is in a state that has increased CNC 

enforceability, and zero otherwise. Controls include Log Total Assets, Leverage, Fixed Assets, 

Market-to-Book, ROA, Firm Age, State Unemployment Rate, Log (State GDP per Capita), State 

GDP Growth, and Democratic Votes. The coefficients on all the control variables are omitted 

for brevity. Appendix A provides variable definitions. The continuous variables, except 

macroeconomic ones, are winsorized at their 1st and 99th percentiles. Dollar values are expressed 

in 1999 dollars. Standard errors are clustered at the state level (t-statistics are in parentheses). 

*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.  

 

  Log (1+CO2_R) 

  (1) (2) (3) (4) 

Weaker CNC Enforcement −0.163*** −0.180*** −0.165*** −0.167** 

 (−2.73) (−2.87) (−2.71) (−2.52) 

KLD Index −0.028**    

 (−2.45)    

Net KLD Index  −0.024**   

  (−2.11)   

KLD Environment Index   −0.061**  

   (−2.57)  

Net KLD Environment Index    −0.027** 

    (−2.06) 

Controls Yes Yes Yes Yes 

Plant FE Yes Yes Yes Yes 

Industry  Year FE Yes Yes Yes Yes 

Observations 4,433 4,433 4,433 4,433 

R-squared 0.941 0.941 0.941 0.941 
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Table OA4. Robustness: Controlling for Additional Variables 

This table reports the results from the OLS regressions relating plant carbon emissions to weaker 

CNC enforcement 2010–2019. The dependent variable is Log (1+CO2_R). The variable Weaker 

CNC Enforcement is an indicator variable equal to one if a plant is in a state that has decreased 

CNC enforceability, minus one if a plant is located in a state that has increased CNC 

enforceability, and zero otherwise. Controls include Log Total Assets, Leverage, Fixed Assets, 

Market-to-Book, ROA, Firm Age, State Unemployment Rate, Log (State GDP per Capita), State 

GDP Growth, and Democratic Votes. The coefficients on all the control variables are omitted 

for brevity. Appendix A provides variable definitions. The continuous variables, except 

macroeconomic ones, are winsorized at their 1st and 99th percentiles. Dollar values are expressed 

in 1999 dollars. Standard errors are clustered at the state level (t-statistics are in parentheses). 

*, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.  

 

  Log (1+CO2_R) 

  (1) (2) (3) (4) 

Weaker CNC Enforcement −0.181*** −0.174** −0.196*** −0.191*** 

 (−2.83) (−2.59) (−3.15) (−3.00) 

R&D Expenses 5.007   19.978 

 (0.12)   (0.37) 

R&D Dummy −0.078   −0.005 

 (−0.11)   (−0.01) 

Capital Expenditures  1.080  1.147 

  (1.01)  (1.08) 

Acquisition Expenditures   −0.487 −0.398 

   (−1.49) (−1.25) 

Controls Yes Yes Yes Yes 

Plant FE Yes Yes Yes Yes 

Industry  Year FE Yes Yes Yes Yes 

Observations 5,064 5,064 4,885 4,885 

R-squared 0.938 0.938 0.938 0.938 

 

 

 

 


